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Discovering structure via matrix rank
minimization:
Final Report

S. Vavasis H. Wolkowicz

2012-April-25

1 Overview

During this three-year project, Vavasis and Wolkowicz, together with stu-
dents, postdocs, and colleagues, made a number of advances in the convex
optimization and its application to data mining and sensor localization. In
this report we highlight some of these accomplishments.

2 Research progress in data mining

During this project, we made progress on several fronts with regard to convex
relaxation of problems in data mining and sensor network location. Ames
and Vavasis completed two papers on data mining with convex optimization.
The first, “Nuclear norm minimization for the planted clique and biclique
problems,” considers the following NP-hard problems. The maximum clique
problem is, given a graph G, find the largest set of nodes that are all mutually
interconnected by edges , i.e., a set of k nodes such that all possible k(k +
1)/2 edges are present between the nodes, with k maximum. The maximum
biclique problem is, given a bipartite graph G = (U, V,E), find the U∗ ⊂ U
and V ∗ ⊂ V such that all possible edges |U∗|× |V ∗| are present in the graph,
and such that |U∗| · |V ∗| is maximized. Both problems are NP-hard.

Both problems are simple model prolems of information retrieval prob-
lems. For example, the clique problem has been used on EEG data to find
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sites in the brain linked to seizures, while the biclique problem has been used
to find features in databases of images.

Ames and Vavasis [2] showed that if the clique or biclique is constructed
in the following manner, then it is solvable in polynomial time via convex
relaxation. Start with a graph containing n nodes and no edges. Insert
either a single clique or biclique, say with k nodes and k(k + 1)/2 edges (in
the clique case) or k + k′ nodes and kk′ edges (in the biclique case). Then
inserted diversionary edges either at random or according to an adversary’s
strategy. If the edges are inserted at random, then the graph size n may be
as large as const · k2 (and hence with constk4 edges), and yet the clique is
still found via convex relaxation with probability exponentially close to 1. If
the edges are inserted by an adversary, then convex relaxation can still find
the clique or biclique even though as many as const · k2 have been inserted
(almost enough to create another maximum clique or biclique).

Their second paper concerned the combinatorial clustering problem [3].
This problem asks, given a graph G in which nodes are data atoms and edges
are affinities and given an integer k, find k cliques in the graph that cover
the maximum number of nodes. This problem is obviously NP-hard since
it generalizes the famous max-clique problem (the k = 1 case). It is also
a very general way to pose clustering problems which try to partition data
items into clusters so that the affinities between atoms in the same cluster are
greater than affinities between atoms in other clusters. The result of Ames
and Vavasis is that this NP-hard problem can be solved in polynomial time
by a convex relaxation provided the instance is constructed in a certain way.
The construction involves first laying down the clusters and then additional
inserting a large amount of noise, that is, affinity edges between nonrelated
nodes chosen at random.

The third paper coming out of Ames’ PhD thesis is singly authored by
him. In this paper, he considers a more general version of clustering in which
edges between nodes in the same cluster are assigned a weight drawn from
a probability distribution with mean α, while nodes in different clusters or
nodes not in any cluster are drawn from a probability distribution with mean
β. Surprisingly, the assumption α > β is the only one needed to ensure that
a convex relaxation can recover the clusters provided they satisfy a certain
size lower bound. This is a guarantee stronger than any we know about in
the previous literature.

We also carried out work with Xuan Vinh Doan, a postdoc hired under
the project, on feature extraction from data matrices. Doan and Vavasis’s
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first result addresses the NP-hard problem of finding a large approximately
rank-one submatrix of a given nonnegative matrix A. If A encodes an image
database, then finding this submatrix can help find a visual feature in an
image database or a topic in a text database. We are able to solve this
problem in polynomial time using convex relaxation, provided the input data
matrix is constructed in a certain way. This result has been submitted to
a journal [9]. Our second result addresses efficient solution of the resulting
relaxation [8]. Our goal is to develop an algorithm for nonnegative matrix
factorization (NMF), that is, a decomposition of A into nonnegative rank-
one terms. This problem is NP-hard but may admit a solution via convex
relaxation that is guaranteed to work for certain classes of instances. We
have begun work with V. Chandrasekaran on convex relaxation of NMF.

3 Research progress in convex optimization

Karimi and Vavasis have developed a new algorithm, CGSO [12], for large
scale unconstrained convex optimization in the case that the objective func-
tion is differentiable. Their method combines the best features of classical
nonlinear CG with the complexity bounds of Nemirovsky and Yudin. In
more detail, classical nonlinear CG (e.g., Fletcher-Reeves, Polak-Ribière) are
generalizations of Hestenes-Stiefel conjugate gradient and, as such, converge
in an optimal fashion for convex quadratic objective functions. On the other
hand, for general differentiable objective functions their performance can be
exceedingly poor as demonstrated by Nemirovsky and Yudin. On the other
hand, Nemirovsky and Yudin’s method has the optimal complexity bound up
to a constant factor, but is not exactly optimal, and in particular, is subopti-
mal for quadratic functions. In addition, their algorithm requires knowledge
of Lipschitz constants of the function.

Our proposed algorithm is optimal for quadratic functions (because it
reduces to H-S) but also achieves the Nemirovsky-Yudin bound for general
differentiable convex functions. In addition, it does not require knowledge
of any parameters. Each iteration requires solution of a subproblem in two
dimensions, which is more expensive than traditional CG. In addition, if
certain inequalities fail, the dimension of the subproblem can increase to up
to O(log k), but we have not seen this behavior in practice. Even though
the subproblem is more expensive, our computational testing shows that the
method outperforms traditional conjugate gradient in almost all cases.
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In current work begun at the end of the grant, Karimi and Vavasis are
extending the method to constrained convex optimization. A targeted appli-
cation is solving the convex relaxation arising in compressive sensing.

We report on our progress in developing efficient, stable, algorithms for
three classes of problems: Linear Programming (LP), Semidefinite Program-
ming (SDP), Trust Region Unconstrained Minimization (TR). Wolkowicz
and students and postdocs have developed an approach to making interior
point methods more robust. Current popular interior-point path-following
algorithms for LP and SDP use block elimination to exploit the structure of
the optimality conditions and form the normal equations to find the Newton
search direction. The block eliminations do not include any type of partial
pivoting. This leads to instability and ill-conditioning. Their approach avoids
the ill-conditioning to obtain a stable search direction that can exploit spar-
sity. This search direction allows for solutions with higher accuracy. The
LP code from [11] was recently revised and implemented into the latest ver-
sion http://www.maplesoft.com/MAPLE 14 (work with Jason Hinek). The
SDP code has been written and rigorously tested in [10] and is being imple-
mented for the next version of MAPLE. In addition, an efficient TR method
based on a trust region Lanzcos type subproblem algorithm that can exploit
sparsity. (This is part of the Master’s thesis of Heng Ye.)

4 Research progress in sensor localization and

Euclidean distance matrices

There are many instances of SDP where the Slater constraint qualification
(CQ) fails. A facial reduction process can be used to regularize the prob-
lem. This is studied and implemented in [5]. In particular, the CQ fails for
instances of sensor network localization (SNL) and molecular conformation
(MC). Instead of this being a drawback, the structure can be exploited to
both speed up algorithms and increase the accuracy. For SNL, the facial re-
duction corresponds to exploiting the clique structure of the problem. This
has been implemented and tested to solve huge problems to high accuracy,
e.g. n = 106 nodes to 16 decimals accuracy in under 3 minutes on a laptop,
see [14] as well as e.g. [15, 13, 1].

For MC, typical proteins are formed from amino acids whose molecular
structure is well known. This is equivalent to fixing cliques in the protein

4



and applying facial reduction. This research is ongoing with several pub-
lications in progress, and a poster session at http://compbio.cs.sfu.ca/

recomb2011/RECOMB 2011 (work with Nathan Krislock, Babak Alipanahi,
Ming Li, et al). The facial reduction idea has been successful in increasing
the accuracy and reducing the computation time. The technique has been
implemented in a software package called SPROS, which is able to determine
protein structures as accurately as any known competing approach. Further-
more, SPROS is more robust with respect to noise in the data than other
methods because the noise can be properly accounted for via inequality con-
straints rather than ad-hoc techniques in which some of the distances are
assumed to be exact.

5 Outreach activities

Vavasis served on the program committee of the SIAM Annual Meeting,
Pittsburgh, PA, July 12–16, 2010. He also organized two minisymposia on
topics related to the project, namely, first order methods for convex opti-
mization and recent progress in rank minimization. The eight speakers in
these two minisymposia were S. Wright (Wisconsin), S. Karimi (Waterloo),
G. Lan (Florida), Z. Lu (Simon Fraser), K.-C. Toh (National U. Singapore),
I. Dhillon (Texas), B. Ames (Waterloo), M. Fazel (Washington). Finally, he
served as a panelist on a career development panel.

Wolkowicz served on the ICIAM 2011 Program Committee and organized
three minisymposia. He also served as editor of a special issue of Math. Prog.
He also served on the organizing committee for the workshop in honor of
J. Borwein’s 60th birthday and as an editor of the proceedings.

Vavasis also served as co-chair of the SIAM Conference on Optimization,
Darmstadt, Germany, May 16–19, 2011. In addition to inviting speakers,
organizing sessions and other administrative work, he also organized and
chaired the funding agency panel.

Vavasis’s students and postdocs gave talks on work related to the project
at the Fall 2011 INFORMS meeting, the SIAM Annual Meeting, and the
Waterloo Grad Student Research Conference. Wolkowicz delivered a plenary
talk at the workshop in honor of Claude Lemarechal.

Vavasis served as Program Director for the SIAM Activity Group in Op-
timization and as a member of the Householder Prize Committee. Wolkowicz
served as a member of the SIAM Council.
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The grant hosted visits by Serge Kruk (Oakland), Boris Mordukhovich
(Wayne State), Kim-Chuan Toh (National U. Singapore), Yurii Nesterov
(U. C. Louvaine), Inderjit Dhillon (Texas), Yuri Levin (Queens), Yinyu Ye
(Stanford), Pablo Parrilo (MIT), Alexander Barvinok (Michigan).
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